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States of anelastic strain can be associated with excess concentrations of point defects, as 
generated by mass transport in a sintering compact. Correspondingly, states of mechanical 
long-range self-equilibrated stresses ("autostresses") can be produced. The relationships 
between anelastic strain and autostresses have been derived for a two-particle model. 
A generalized relation between chemical potentials and autostresses, including surface stresses, 
is provided, which allows derivation of local thermodynamic driving forces for mass transport. The 
concept of equivalent external sintering stress, assumed to be the driving force for the global 
densification process, is shown to correspond, approximately, to the material- and history- 
dependent normal autostress component acting on the neck cross-sections. Predictions made 
from the model provide a new interpretation of experimental observations of the effect of gaseous 
phases, such as H20 and C02, on the sintering of MgO and CaO powders. 

1. In troduc t ion  
It is recognized [1-5] that inhomogeneities, such as 
particles of different size, asymmetric neck formation, 
macropores, inclusions, etc., in a sintering compact 
give rise to differential rates of sintering, i.e. to in- 
homogeneous strain, which can produce states of in- 
ternal stresses. 

Defay and Prigogine [6] remarked that in a single 
grain undergoing diffusional processes, the lattice can 
be deformed with respect to its equilibrium configura- 
tion by any local excess of point defects capable of 
altering the atomic spacings. Novick and Berry [7] 
have associated the presence of point defects with 
a local straining of the lattice, showing that a readjust- 
ment of such defects under the action of diffusion 
mechanisms may be responsible for an effect of elastic 
relaxation. 

On this basis, it is possible that inhomogeneous 
strain arises also on an intermediate scale, between the 
different regions (bulk, free surfaces and grain bound- 
aries) of a pair or a cluster of sintering particles, on 
account of differences in the local point-defect concen- 
trations. It is this scale of strain inhomogeneities and 
their influence on sintering which will be examined in 
the present paper. 

As in the macroscopic case, the microscopic differ- 
ential strains between free surfaces, interfaces and 
bulk, during densification processes, can give rise, by 
mutual constraint, to mechanical long-range internal 
stresses. In the absence of external load, such internal 
stresses will here be called "autostresses". In a surface 
or interfacial layer the autostress tensor tends to be- 

come tangential to the surface [6] and so reduces to 
a two-dimensional "surface stress" tensor. 

Surface stress in solids, as pointed out, for example, 
by Herring [8] and Shuttleworth [9], is not the same 
as surface energy in concept and value. Solliard and 
Flueli [10] have measured the surface stress of small 
metal particles, while Nicolson [11] showed both the- 
oretically and experimentally that in some small ionic 
crystals the surface stress can exceed the value of 
surface energy by a factor of over 5. 

All these works [8-11] examined phenomena which 
resulted from elastic strain in the surface: in such cases 
the surface stress is locally related to the partial deriv- 
ative of the surface energy with respect to the elastic 
strain. When the strain is anelastic and history-de- 
pendent, as it is the case in compacts during sintering 
[12], the stress-strain relations both of surfaces and of 
the bulk are more complex and depend on the instan- 
taneous geometry of the entire system. In the present 
work, such relationships are derived from a generaliz- 
ation of the mechanical model of a surface layer. The 
generalized model is used to calculate expressions for 
the autostresses in the grain boundary, in the free 
surface and in the bulk of a sintering two-particle 
system. 

Transport due to diffusive flux between different 
regions of a system is driven by the gradient of the 
chemical potential of the diffusing species, which is 
known to be related locally to the normal stress 
[13, 14]. A generalization of this statement will be 
obtained in this paper showing that the complete 
stress tensor, including the two-dimensional stresses in 
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a surface or interface layer, contributes to the chemical 
potential. 

Most recent theories on sintering of powders and 
porous compacts envisage the densification rate as the 
product of a kinetic factor, a microstructural factor 
and a global driving force, eventually accessible to 
experiment and termed "sintering stress" [1, 13], "sin- 
tering pressure" [15] or "sintering potential" [14, 16]. 
A very important question, not yet completely an- 
swered, is the relationship of the sintering stress to the 
internal properties of the system. In this paper the 
question is widely debated and a material- and his- 
tory-dependent parameter, related to the autostresses, 
is suggested to represent, at least in a first approxima- 
tion, the experimental concept of equivalent sintering 
stress. 

Experimental observations of the catalytic effect of 
gaseous phases, such as water vapour and CO2, on the 
sintering of MgO and CaO powders, suggest that 
a gaseous phase, to be a catalyst, must not only be 
chemically adsorbed at the surface, but also dissolve 
into the inner surface layer. These results can be ex- 
plained by the nature of the autostresses as derived in 
this paper. 

2. The nature of internal stresses 
induced by point defects 

As a matter of definition, the standard undeformed 
state of a crystalline solid can be assumed to coincide 
with its configuration at thermodynamic equilibrium. 
Accordingly, if an excess of point defects, with respect 
to the equilibrium concentrations, is created in a suffi- 
ciently large region of the solid, by diffusion or other 
processes, a state of deformation is introduced. This 
deformation may be prevented in part or totally, de- 
pending on the geometrical constraints which exist 
between the different regions of the solid. 

The resulting state of strain at each location, ac- 
cording to Nowick and Berry [7], can be described in 
a continuum approach by a symmetric tensor field, 
which is proportional to the amount of defects per 
unit volume exceeding the equilibrium concentration 
in that place. 

It will be convenient to define separately defect- 
induced strains in a three-dimensional lattice and at 
surface or grain boundaries, by 

E (i) = nv~no Lv (i) (la) 

e(i) = nsif~sL s (i) (lb) 

where E(i) and ~(i) represent, respectively, a three- 
dimensional strain tensor for the bulk and a corres- 
ponding two-dimensional tensor for a surface or grain 
boundary; nvi and nsi are, respectively, the bulk and 
surface excess concentrations (with respect to the un- 
strained state) of defects belonging to a species (i); f~o 
and Q~ = ~o/d~ are, respectively, the atomic volume 
and the atomic area, where d~ is the thickness of the 
surface layer. It should be remembered that, at equi- 
librium, the defect concentrations in the surface, grain 
boundary and bulk, differ from each other. The excess 
quantity in, for example, the surface, is defined relative 
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to the concentration which would be present when the 
net exchange of atoms between that region and re- 
gions of different bonding environments is zero [17]. 

The tensors Lv(i) and Ls(i) are the products of shape 
factors (i.e. of factors which depend on the defect 
symmetry with respect to the symmetry of the lattice) 
and of distribution functions which account for the 
spatial distribution of the defect population within the 
region considered. For vacancies, the symmetry factor 
will have principal components of negative sign, with 
values between 0 and - 1; for interstitials, the princi- 
pal components will be positive. The distribution fac- 
tors will always be different from zero and of the order 
of unity for distributions approaching isotropy. 

States of stress can result from states of strain de- 
scribed by Equation 1 if the region considered cannot 
deform freely, i.e. is constrained. A simple example in 
which a stress can be created is that of an isolated 
single particle under non-equilibrium conditions ob- 
taining when matter is exchanged with the environ- 
ment across its surface. Under these circumstances, 
the defect concentration at the surface can be different 
from the equilibrium value. If the surface becomes 
enriched in vacancies, it would shrink by an amount 
given by Equation lb, provided that it is free to do 
that. Actually the surface, being connected to the bulk, 
cannot slide freely, therefore it will be stressed in 
tension, while exerting on the bulk a radial compres- 
sion. The amount of such stresses depends on the 
elastic compliances of both the surface and the bulk 
and can be calculated easily in the case of spherical 
symmetry. 

The example shows how true mechanical stresses 
can exist in the surface of a crystal when defect in- 
homogeneities are present. Experimental evidence of 
this behaviour has been reported by Nicolson [11], 
who observed by X-diffraction methods the reduction 
of the crystal parameter connected with the adsorp- 
tion of gas at the surface of very fine crystalline pow- 
ders. The effect was observed also for H20  on MgO 
[is]. 

During the sintering process, two or more particles 
weld together at grain boundaries, thus exerting mu- 
tual constraints on one another. If the excess point- 
defect concentrations due to mass transport turn out 
to be different in the different regions of the system, we 
must expect that states of internal stresses (auto- 
stresses), globally in mechanical equilibrium, will be 
produced in the bulk as well as in the surface and 
boundary layers. 

3. Mechanical  model of the surface 
and interface 

From the mechanical point of view, a stressed surface 
layer can be described, following the theory of two- 
dimensional structures [19], as a membrane of vanish- 
ing thickness. The membrane is made mechanically 
equivalent to the layer, by applying convenient stress 
resultants to represent the through-thickness state of 
stress. 

On the outer and inner side of the membrane, with 
outwardly normal vectors respectively +n and -n, the 



tractions nS  + and - n S - ,  generated by the bulk stress 
tensors S + and S- ,  at the boundaries of the layer, act 
as external loads. Inside the membrane, stresses can 
result which have components both tangent and nor- 
mal to the surface. However, because the solids con- 
sidered here follow a Cauchy model, without couple- 
stresses [20], moment resultants could arise in the 
layer only from through-thickness stress distributions. 
Then all moment resultants can be assumed to vanish, 
if referred to a given "mean surface", located at a dis- 
tance zo (Zo < d) from the layer bottom. In such condi- 
tions the solid surface obeys a Gibbs model [6]. 

Letting the equivalent membrane coincide with the 
mean surface as defined above, shear resultants will 
vanish together with moments and all membrane 
stresses will lie in the plane tangential to the surface. 
Then the membrane stress tensor is two-dimensional, 
and described by 

f" = Ssdz (2) 
O 

where S~ represents the in-plane projection of the 
three-dimensional stress tensor S originally present in 
the layer. 

At any given point of the idealized membrane, the 
membrane stress tensor, o, must fulfil two local equi- 
librium equations [21], Equations (3) and (4): 

Vso = t -  - t + (3) 

for in-plane equilibrium, where Vs is the gradient oper- 
ator on the surface and t + and t -  represent the tan- 
gent loads eventually carried by the two bulk phases 

c~:K= p+ - p-  (4) 

for equilibrium in the direction of the normal. Equa- 
tion 4 is equivalent to Laplace's equation for solids, on 
a scale where faceting can be neglected; K is the curva- 
ture tensor and the operational symbol ":" indicates 
matrix scalar product; p+ and p -  are the loads applied 
normal to the two sides of the membrane, given by, 
respectively 

p+ = nS+n (5a) 

p -  = n S - n  (5b) 

If t + = t - ,  and if the membrane stress tensor is iso- 
tropic, i.e. a = aI, Equation 3 predicts constancy for 
cy through the entire surface. In such a case the behavi- 
our of the layer is quite similar to that of a liquid. 

The mechanical work expended to strain a volume 
of the solid not containing interfaces, is expressed by 
the volume integral 

= ; v S : d E  d V  (6) dW 

of the scalar product between the stress tensor and the 
increment of total strain dE. 

The work expended to strain a surface or grain 
boundary, including the work required for surface 
creation and annihilation, reads 

dW~ = ~ (a:d~ + p+du + + p - d u - ) d A  (7) 
Js 

where d~ is the total strain increment of the memrane, 
including defect-induced strain as expressed by Equa- 
tion 1; du + and du-  are the displacements at the two 
sides of the membrane, in the direction of the normal. 

Indicating by de + and de-  the incremental 
axial strain components in the direction of the nor- 
mal, respectively, at the outer and inner boundaries of 
the surface layer, we can write approximately (for 
small Zo, d) 

du + = (d - Zo) de + (Sa) 

du -  = zode- (8b) 

Bulk quantities such as de + and de-  are thus involved 
in the surface work, in accord with the fact that the 
membrane properties depend on the interaction of the 
surface or boundary with the bulk solid. 

4. Calculat ion of the autostresses 
in a two-par t i c le  system 
during sintering 

The model in Fig. 1 illustrates the standard idealiz- 
ation for a pair of single-crystal particles during iso- 
thermal sintering, The gradients in vacancy concen- 
tration produced by diffusion of atoms from the bulk 
to the adjacent grain boundary, i.e. the gradients in 
excess vacancy concentrations, can be expected to 
relax the elastic bonds of the boundary layer, giving 
rise to an anelastic negative strain Sb, approximately 
isotropic and homogeneous. If the grain boundary is 
not free to deform, a tensile stress corresponding to the 
elastic part of eb will appear and the effective strain 
will be less than eb- 

The surfaces of the two particles in the neck regions 
may exchange matter with the grain boundary or with 
other phases, both solid and gaseous. 

These transport phenomena modify the point-de- 
fect concentrations and, therefore, it is possible to 
define two isotropic anelastic strains el and ez for the 
corresponding membranes. Magnitudes and signs of 
such strains will depend on the excess of point defects 

a 

Figure 1 Idealized model of a two-particle system. 
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and their kind. If, for instance, the surfaces receive 
atoms in interstitial sites, both strains will be positive; 
if an excess of vacancies is produced, the unrelaxed 
strains will be negative. The signs and magnitudes of 
the corresponding membrane stresses will depend on 
the surface constraints and will be related to the elastic 
compliances of the system. 

A convenient model to describe the above situation 
consists of three membranes, meeting at a triple joint 
and enveloping two obtruncated spheres. The auto- 
stresses in the region of the neck can then be cal- 
culated following a standard method for internally 
constrained structures [22]. The underlying concept 
can be better understood if referred to a simple in- 
plane truss model (Fig. 2), in which the bars represent 
the three membranes as they meet at the neck. Now 
imagine disconnecting the grain boundary (repres- 
ented by bar b in Fig. 2b) along the joint periphery. 
Let bar b undergo a negative stretch, equal to the 
unrelaxed anelastic shrinkage, ab, of the grain bound- 
ary. While the free end of the bar tends to depart from 
the joint, the corner formed by the remaining pair of 
bars, will either follow or oppose the displacement, 
depending on whether bars 1 and 2 are themselves 
positively or negatively strained. 

Because the net displacement of the joint (point O in 
Fig. 2b) must be zero to maintain the continuity of the 
system, the net anelastic shift ~ must balance the 
algebraic resultant of elastic displacements at the end 
of bar b and at the corner of the simple truss 1 + 2. 

The elastic displacements are produced, respective- 
ly, by a membrane stress ob in the grain boundary and 
by membrane stresses or1 and ~2, which act in the two 
envelopes and equilibrate with Orb. No point force can 
be exchanged with the bulk at the triple joint. 

Defining the elastic rigidities as kb and ks, respec- 
tively, for the grain boundary and for the "simple 
truss" formed by membranes 1 and 2, the compatibil- 
ity equation reads 

5 = Ob(1/k s + 1/kb) (9) 

But the net shift, 8, is also given by 

= ~b -~ ~s (10) 

where ~b and fis are, respectively, the anelastic dis- 
placements of the boundary and of the truss corner. 

In the grain-boundary membrane, which can be 
regarded as a circular plate of radius a, the radial 
displacement, ~b, is related to surface shrinkage, ~b 
(supposed to be homogeneous and isotropic), by the 
simple equation 

6b = ~ba/2 (11) 

as readily obtained by elementary geometry. Under 
similar conditions, as outlined in Appendix 1, the 
membranes which surround the two particles, will 
shrink at the tripte joint by approximately the amount 

6s ~ (~l + ~2)a/4 (12) 

Equations 11 and 12 allow one to calculate 5; ac- 
cording to Equation 10 the elastic rigidities ks and k b 
are also required in order to solve for CYb. Values of ks, 
kb, as calculated for spherical particles, are given in 
Appendices 2 and 3; they are found to depend on the 
elastic constants Gs and Gb of the membranes, as well 
as on the angles 131 and ]32. After eliminating ks and kb, 
Equation 11 yields 

~ = - G* (~b + es)/2 (13) 

where 

2 Gs Gb G* = (14) 
[Gb (sin2131 + sin2132)/sin2(131 +/72) + 2Gs] 

From equilibrium of the triple joint (Fig. 2c), comes 

ol  = Ob sin132/sin(131 + 132) (15a) 

c~2 = Ob sin131/sin (131 + 132) (15b) 

In the special instance of equal-size particles (131 = 
J~2 = 13), Equations 14 and 15 become 

G* = 4 GsG b cosZ13/(Gb + 4 Gs cos213) (16) 

ol  = c~z = c%/2 cos13 (17) 

The relationship between the surface stresses (~b, Ch, 
etc.) and the surface tensions, Fs and Fb, follow dir- 
ectly if the membrane elasticities Gb and Gs are ex- 
pressed in terms of Young's modulus which, in turn, 

A ~ S~ 

13,_ b #~ 

J 
~3 2 

(a) (b) (c) 

Figure 2 Elastic-truss model for triple joint of two particles at a boundary (a) geometric model; (b) displacements in the free-body 
configuration; (c) internal stresses. 
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can be related to the surface tension. In fact, G b and Gs 
can be defined by, respectively, Gb = Ebdu/2(1 + v) 
and G~ = E~dJ2(1 + v), where d b and d~ are the thick- 
nesses of the layers, E is the elastic modulus of the 
material and v Poisson's ratio, which usually ranges 
between 0.25 and 0.35 [23], and in this case is set equal 
to v ~ 0.27. As a first approximation, the Young's 
modulus, E, is given by E ,,~ rc2F/b or by a similar 
expression [24], where b is the atomic spacing. Ac- 
cordingly, C~b can be expressed as 

.] 
CYb = --  4COS2~j(~;b + ~;s) 

(18) 

If the thickness of the free surface is assumed to be the 
same as that of the grain boundary and if the ratio 
Fb/Fs is less than unity [13], at the beginning of 
sintering, Equation 18 simplifies to 

0-b ~ 4(1 + v)b 
(19) 

Thus the grain-boundary stress, CYb, turns out tO be 
directly proportional to the corresponding grain- 
boundary tension Fb, which, in fact, has been con- 
sidered by some authors [16] to be equivalent to 
a constant mechanical traction. However, it should be 
emphasized that the magnitude and even the sign of 
the surface stress, which is the proper mechanical 
variable, are also proportional to the defect-induced 
anelastic strains, which can change during the process. 

Because the grain boundary is a vacancy sink, ab is 
always negative and relatively large in absolute value, 
and because, in most cases, as is negative or zero, the 
grain-boundary stress is normally tensile. But, in 
certain cases, the magnitude of ~b can be decreased by 
the formation of positive strains at the neck surface 
and it is possible to envisage a situation in which 
the total strain is such as to make CYb equal to zero or 
even negative. Negative values of 0-b might occur 
when gases adsorb in the surface layer, leading to 
a positive a~. 

Membrane stresses c~1 and cy2 in the surfaces en- 
veloping the two particles, are themselves tensile for 
values of 13 in the range from 0 to ~z/2 and would 
become compressive only for a convex neck surface 
(13 > re/2). The situation corresponding to 13 = x/2 can- 
not be in equilibrium, unless with ob = 0. 

Knowledge of the surface stresses allows calculation 
of the bulk stresses that act on the neck cross-section. 
Suppose that one of the two particles (say grain 1) is 
disconnected from the grain boundary (Fig 3), very 
close to the joint. In order to keep mechanical equilib- 
rium, the membrane stress Cyl must be applied to the 
joint, and the bulk stresses to the neck cross-section. 

If the neck has an approximately circular cross- 
section and is axially symmetric (i.e. if 13~ is nearly 
constant along the joint periphery), the bulk resultant 
is normal to the grain boundary and is given by 

f ,  = 2~a ~lsin131 (20) 

being applied at the centre-of-area of the grain-bound- 
ary cross-section. Accordingly, the bulk of particle 

t~ 

0- 1 

Figure 3 Visualization of resultant bulk stress. 

1 adjacent to the boundary, is subjected to a normal 
compressive stress, S,., which, in the mean, amounts 
to 

2CYb sin131 sin132 
Snn = -- (2t) 

asin(131 + 132) 

as obtained by eliminating ~1 in Equation 20 via 
Equations 13 and 15 and dividing by the cross-sec- 
tional area, rca 2. 

In the case of identical particles (131 = 132), substitu- 
tion of ~b from Equation 18, yields 

F -~2db . ]FbF cos13 4cos213](a b 
s . .  = L( 1 + v ) b J r  L i r u a u / r ~ +  

+ e~) 

(22) 

where r is the radius of a particle and a = r sin13. 
At the beginning of the sintering process (i.e, 13 = 0), 

under the above assumptions, S,n approaches the 
value 

2 Fb db 
S.. - (eb + ~s) (23) 

ro b 

Distributions of Sn, over the neck cross-section have 
been calculated by several authors (e.g. [2, 4, 13]) from 
the condition V2Sn, = const, and found to be, for this 
and for other simple models, parabolic in shape. 

In general, depending on the geometrical shape, the 
resultant of ~ on the joint periphery may have also 
a component tangential to the grain boundary and, 
furthermore, may exhibit an eccentricity with respect 
to its centre-of-area. In that case, in addition to a nor- 
mal force, the boundary may be subjected to shear, 
bending moments, and a torque. For regular shapes, 
however, the effect of the normal force is usually more 
important than the others. 

If the grain boundary is flat, the state of stress in the 
adjoining regions of the two particles is the same. If 
the boundary is curved, particle 2 receives an addi- 
tional force from the resultant of the membrane stress 
acting in the grain boundary. 

Accordingly, there will be a difference in the states 
of stress acting on the two particles, with the particle 
adjoining the concavity of the boundary undergoing, 
in the mean, a higher compressive stress. 

This unequal stress can affect the grain growth. 
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5. Driving forces for mass transport 
and autostresses 

Consider, for the sake of simplicity, an elemental solid 
formed by a bulk phase (v), free-surface layers of 
thickness ds and grain-boundary layers of thickness db. 
Free surfaces and grain-boundary layers will be as- 
sumed to follow the mechanical model introduced in 
Section 3, which is equivalent to Gibb's surface model 
[6]. In this system the species considered to undergo 
diffusional transport are, for brevity, only lattice 
atoms and vacancies. 

The change in the total Helmholtz free energy of the 
system is given by 

dF = dFv + dFs + dFb (24) 

At constant temperature, T, the change of free energy 
of a region of the system, say the bulk, is 

dF~ = gl,v* dNl,~ + ]-12,v* dN2,~ 
t ~  

+ Jv S:dE d V + 8Q - TdSv (25) 

where dNl,v and dN2,v are the changes in numbers, 
respectively, of atoms and vacancies in the bulk, gl,v*, 
laZ,v* are coefficients to be interpreted later, 8Q is the 
heat exchange, and the integral represents the mech- 
anical work. 

The mechanical work will be expended, in general, 
for plastic and elastic deformations as well as for 
viscous deformation (including creation and annihila- 
tion of volume due to the exchange of defects between 
the bulk and the other regions) which is responsible 
for densification. On account of the additivity of strain 
increments, we can write 

dE = dEp~ + dEe~ + dE2 (26) 

where subscripts pl, el indicate, respectively, plastic 
and elastic strain increments and subscript 2 refers to 
that part of the total strain that is induced by an excess 
vacancy concentration dnz,v. The contribution of the 
elastic strain is normally smaller than the anelastic 
part of the total strain [25], and can be neglected. 

Separating the different parts of the total strain 
increment and taking Equation la into account, 
Equation 25 can be written 

= gl,v*dNl,v + ~tZ,v* dNz,v + j~S:Lv(2)~odn2,vdV dF~ 

+ ~ S:dEp~dV + ~Qv - TdSv (27) 
J V 

By applying the theorem of the mean value to the first 
integral, we have also 

dFv = gl,v*dNl,v+ ([A2,v* -[- S:Lv(2)~o)dN2,v 

+ fvS:dEp, dV + 6Qv - TdS~ (28) 

where ~q represents the mean stress tensor over the 
bulk domain V. Because F~ is a function of the state 
variables Nl,v (number of atoms in V) and N2, ~ (num- 
ber of vacancies in V), the equality 

~g2,v/Idg2,~ = (g2,v 'r -~- $:L~(2) f~o)dg2,v (29) 

must be true for any arbitrary increment of the va- 
cancy number. Then the relation 

~2,v = #2,v* -~ S:Lv(2) flo (30) 

is obtained, where #2,v is the ordinary chemical poten- 
tial of the bulk vacancies. Accordingly, gZ.v* repres- 
ents the stress-free chemical potential. 

Similar equations for surfaces and grain boundaries 
must take into account the fact that such regions are 
not autonomous phases. 

Following Defay and Prigogine [6], the ordinary 
chemical potential for vacancies at free surfaces or 
interfaces is 

~F i ~Fi ~F i 
Ft2,i = + - -  + (31) 

~ N 2 ,  i zo~Nz,  v- (di - -  Zo)~Nz,v+ 

where subscript i (s, b) can identify either a surface or 
grain boundary and superscripts - and + refer to 
locations at either of the two sides of a given interface 
layer. 

Equation 31, introduced in equations which de- 
scribe the free energy balance for the surface and the 
boundary, yields respectively 

ft2,s = g2,~* + 6s:L~(2)f~s + (/Ss- -/5+)Lv,,(2)f2o (32) 

and 

~[2,b = ~[2,b* -[- (Yb:tb(2)~"~b -I- (/)b- - - /~+)Lv,n(2)Qo 

(33) 
where Lv,,(2) is the component of Lv(2) in the direction 
normal to the interface. Barred symbols refer, as be- 
fore, to mean quantities. 

Equations 30, 32 and 33 relate the ordinary and the 
stress-free chemical potentials to the corresponding 
complete stress tensors in the bulk and in the sur- 
faces/boundaries. Such equations are more complete 
than those usually adopted in the literature [14], 
which consider only a part (normally the isotropic 
component) of the stress tensor. 

It should be noted that Equations 30, 32 and 33, 
even though derived in terms of mean values for the 
entire system, can be applied to local parts of it, 
because balance equations like Equation 28 can be 
assumed to hold also for any arbitrary part of the 
system. In this case the mean stresses must be replaced 
by the local stresses and also the chemical potentials of 
the diffusing atoms must be defined as local quantities. 
Symbolically this procedure corresponds to removing 
bars in Equations 30, 32 and 33. 

Differences in ordinary chemical potentials arise 
between any two locations of the system subjected to 
different states of stress and, in particular, along each 
path crossing a surface or interface. The difference in 
potentials, divided by the distance moved (Zo or d - Zo, 
according to circumstances) corresponds to a sort of 
local flee-energy gradient which acts as a localized 
driving force for mass exchange between the corres- 
ponding regions. 

The driving forces gl and g2 for the exchanges of 
vacancies in a system composed by two identical par- 
ticles, along the paths 

1. neck free surface ~ grain boundary (line 1 in 
Fig. 4), 

4 6 9 8  
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Figure 4 Two-particle system with particles of equal size: examined 
diffusion paths. 

Grain boundary 

t 
\ / 

\ / 

2. neck free surface ~ neck region of the bulk (line 
2 in Fig. 4), 
are easily obtained from Equations 30, 32 and 33 

ob no(l 1 1) 
g' - do do \du 2dsCOSp + (35t 

~[2,b* - -  ~2,S* O'b "O(% 1 ) porto 
, q 2 -  Zo Zo \ d b  2d~cosl3 zo 

(36) 

where rn is the radius of curvature of the neck, 
- p o  = p~+ is the pressure of a fluid, which acts upon 
the free surfaces of the system and do = db/2 + Zo. For 
the sake of simplicity the tensors L~(2.) (i = v, s, b) have 
been approximated with negative unit tensors, which 
would imply perfect isotropy of the lattice and of the 
defect distribution. Negative signs of gradients gl and 
g2 imply vacancy transport in the direction of the 
arrows (Fig. 4) and matter flow in the opposite direc- 
tion. It should be noticed that the local driving forces 
consist of two terms, one due to the gradients of the 
stress-free thermodynamic chemical potentials and the 
other due to gradients of autostresses. Thus, as one 
should expect, mass transport can occur in the ab- 
sence of stress gradients because the differences in the 
purely thermodynamic, stress-free chemical potentials 
can be different from zero. 

In general, a difference between the states of stress 
in the bulk and in the surface phases can either in- 
crease or decrease the local driving force for mass 
transport. In particular, for the model being examined 

(i) the grain-boundary stress, CYb, is always tensile 
(i.e. positive). Accordingly the contribution of the au- 
tostresses depends on the signs of the parentheses in 
Equations 35 and 36; 

(ii) for both paths, at the beginning of sintering, 
cos[3 ~ 1 and therefore the autostresses in all cases 
help to drive matter to the free surface; 

(iii) as sintering proceeds, cos[3 decreases and the 
contribution of autostresses to the local driving force 
is lessened; 

(iv) the neck curvature appears as a significant 
parameter only for path 1, and then only in the initial 
stage of sintering, when r,  may be of the order of d~ 
and do; 

(v) external pressure acts in favour only of path 2. 
Under some circumstances, stress gradients can be 

the only significant driving forces. For  example, stress 
gradients drive mass transport between the bulk 

Figure 5 Model for the description of grain-boundary curvature. 

phases of two particles separated by a curved grain 
boundary (Fig. 5) [26]. Curved grain boundaries arise 
normally when one particle is smaller than its neigh- 
bour across the boundary. In this case there is a differ- 
ence between the stresses, S,n, in the two bulk phases 
adjoining the boundary. From simple geometrical 
considerations, letting crl = cy2 and assuming the 
stress Sn. to act uniformly upon the neck cross-sec- 
tion, we obtain 

~/a z = -- 2f~o ob sin�89 -- ~2)/a (37) 

The difference in the dihedral angles [31 and 132 in- 
creases with the difference in radii rl and r2 of the two 
particles which are formed across the boundary. If the 
difference between the radii is not very large, Equation 
37 can be approximated by 

692 = -- noCrb [-(1/r~) - (1/r2)] (38) 

This is a well known result [27] which predicts a flow 
of matter from the convex side of the boundary to- 
ward the concave side, i.e. from the smaller particle to 
the larger particle, but here the grain-boundary stress 
replaces the surface energy of the grain boundary. 

6. Sintering potential and autostresses 
The sintering potential or sintering stress [13-16] has 
been defined as the equivalent external stress, Z, to be 
applied to the system to halt densification. This para- 
meter is quite useful as, under certain conditions, it is 
accessible to experiment [--28]. 

Among the most significant experimental features of 
the sintering stress E, one may list 

(i) it is almost independent on temperature [29]; 
(ii) it increases almost linearly with increasing 

green density [-30]; 
(iii) at constant temperature and green density, it 

decreases as the relative density increases [,31]. 
Furthermore, if the equivalent external sintering 

stress is understood as an equivalent driving force 
only for mass-transport processes which produce den- 
sification, it seems quite reasonable to assume that 

(iv) its value must tend to vanish when the surface 
diffusion and/or vapourization and condensation are 
the dominant transport mechanisms. 
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A very interesting question, not yet completely an- 
swered, is the relationship of the sintering stress with 
the internal properties of the system. Gregg and 
Rhines [32], Beere [33, 34], De Jonghe and Rahaman 
[13], Cannon and Carter [14] made important contri- 
butions to such understanding, but several questions 
remain open. For instance, the attempt to define 
the sintering stress, Z, as the partial derivative of the 
total surface energy, Fs+ b (free surfaces and grain 
boundaries), with respect to the axial shrinkge [14] 
implies that the axial shrinkage is regarded as a state 
variable. This assumption might be questionable be- 
cause the axial shrinkage includes anelastic and, in 
certain cases [35], plastic phenomena, which are his- 
tory-dependent. 

Instead of using the concept of partial derivative, 
some authors define Z as the ratio of the change in 
total surface energy, dFs+b, to the change of volume 
[36]. This definition certainly applies also when the 
axial shrinkage is not a state variable; however, nei- 
ther 8Fs+b/~L nor 8Fs+b/~V are directly related to 
densification, because, for instance, in the case of 
a predominant coarsening mechanism, the ratios can 
be very large, but the densification is negligible. 

The mechanical work, which is a part of dFs+b, is 
directly related to the densification. This can be easily 
proven, considering that the work done by the auto- 
stresses to change and to strain free surfaces and grain 
boundaries per unit axial shrinkage, equals the work 
of the autostresses in the bulk, because the total work 
of the system, in the absence of external forces, must be 
zero. Thus, for systems approaching the geometry of 
the model considered in the present paper, the work in 
the bulk is mainly the product of the resultantf, of the 
normal autostress, multiplied by the axial shrinkage 
(i.e. densification), namely 

dWs+b - dWv 

= f~ dL (39) 

where, in the case of a two-particle model, f ,  is given 
by Equation 20. According to Equation 39,f. has the 
meaning of a "sintering force" and the corre- 
sponding stress, S,~ on the actual neck cross-section 
corresponds to an internal "sintering stress". 

Equation 21 gives 

S~,,--  ( l + v ) b J  ro 

F cos13(cos~/2) 2j~ ]~ 
• + (40) 

where ro is the initial radius of a particle, related 
through r = ro (cos13/2)- 2/3 to the actual radius, under 
the assumptions that total volume and the spherical 
shape are conserved. 

The temperature dependence of S~ is mainly due to 
the temperature dependence of the surface tension, Fb, 
in Equation 40. As known, the surface tension, at 
constant composition, decreases only slightly with 
temperature [27] (in the range of the sintering temper- 
ature). Accordingly, the internal sintering stress, Sn~, 
fulfils the requirement of feature (i). 
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The dependence of S,n on the green density cannot 
be fully explored with a two-particle model; however, 
it is apparent that the expression of S,, is strongly 
related to the initial geometry of the system. In the 
present case, S.n is inversely proportional to the start- 
ing radius of the particle, ro, in agreement with the 
derivation of Gregg and Rhines [32]. Furthermore, 
Snn is nearly a constant for 13 increasing up to 60 ~ and 
decays rapidly in the final phase of sintering, vanishing 
as 13 = rt/2 as illustrated in Fig. 6. According to the 
present model, an increase in 13 corresponds to an 
increase of the actual relative density and the limi- 
ting case 13 = re/2 indicates the end of densification 
(feature iii). 

The sintering stress defined by Equation 40 also has 
the important property of vanishing when surface 
diffusion and/or vapourization and condensation 
mechanisms are the dominant phenomena (feature iv). 
In this case, S,. vanishes because the total number of 
excess vacancies in ~N2, b and 6N2,s, respectively, in 
the grain boundary and free surface, obeys 8N2,b = 
--8N2,~, According to Equation 1, this means that 

the average values of eb and ~ obey the condition 
s  "4- 1~ s = 0 ,  

The newly defined internal property S., therefore 
obeys all the requirements concerning the equivalent 
external sintering stress, 2;. On this basis, the identity 

Z = S~n (41) 

can be tentatively assumed. 
It is clear that S.. is dependent upon the geometry 

of the system. Accordingly, extensive geometrical in- 
formation on the sample microstructure and its evolu- 
tion is required to make a quantitative estimate of 
such a variable. 

It should be observed that the definition of Sn, given 
in the present analysis does not correspond to a true 
thermodynamic potential. This implies that, if Equa- 
tion 41 holds, the driving force used in describing the 
rate of densification (e.g. [13]) might depend upon the 
particular path controlling the process. This seems 
a reasonable prediction, because different diffusion 
paths can produce different anelastic strain states. 

Furthermore, local mass transports are driven, as 
we have shown in the previous section, by autostress 
gradients and by gradients of stress-free chemical po- 
tentials. Accordingly, the global equivalent driving 
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force, Y,, might not coincide completely with S,,. Fur- 
ther investigations on the kinetics of densification and 
creep are in progress [37] to evaluate the role of the 
gradients of stress-free chemical potentials on the 
mass-transport processes. 

For the present, let us discuss some consequences of 
Equation 41. 

If an external compressive force is applied to the 
sintering system, Equation 39 must be modified to 
take into account the work done by that force, i.e. 
d W~t = f~t dL. Thus the total true stress on the neck 
cross-section becomes 

E = S.n + C%~, (42) 

where cyr is the (compressive) contribution of the 
external force. This result coincides with an assump- 
tion employed by other authors [13]. 

The magnitude of S,,, as defined by the previous 
equations, can be modified by changing the state of 
strain in free surfaces and grain-boundary layers. This 
mechanism can be expected whenever a gaseous phase 
is adsorbed at the free surface of the particles and then 
it is weakly dissolved into the first nearest layers. 
Experimental evidence of this possibility has been 
obtained for the sintering of MgO in the presence of 
H20(v) [38, 39] and of CaO in the presence of CO2 
[40]. In both cases it has been proved that the gaseous 
phase catalysed the sintering process. Furthermore, 
another experiment concerning the sintering of MgO 
in the presence of CO2 [17] showed that such a gas is 
not an efficient catalyst for the densification. Further 
experimental studies proved 1-41] that the CO2 in this 
last case is adsorbed at the surface but is not dissolved 
in the nearest layers of the bulk. 

From these experiments it can be inferred that 
a gaseous phase, to be a catalyst for the sintering 
process of ceramic powders, must not only be chemic- 
ally adsorbed at the surface but also be slightly dis- 
solved into the nearest layers behind the free-surface. 

The solubility of the gaseous species into the bulk 
changes the vacancy concentrations and therefore can 
influence the kinetic and the thermodynamic terms of 
the mass-transport phenomena. 

The theory illustrated here predicts that to change 
the sintering potential S.,, the gaseous phase should 
change the excess vacancy concentrations. In other 
words, if the gaseous phase dissolves into the bulk 
reaching thermodynamic equilibrium, its effect as 
a catalyst should be expected to reduce. 

Fig. 7 [42] plots the amount of water that dissolves 
into an MgO layer against l /T,  in the temperature 
range 580-1000 K. At temperatures higher than 823 K 
the equilibrium solubility is reached, while for lower 
temperature, the water vapour can dissolve only under 
non-equilibrium conditions. It is interesting to ob- 
serve that water vapour, in the range of temperatures 
where its dissolution occurs in non-equilibrium condi- 
tions; has a true catalytic effect on the densification 
process (Fig. 8) [39], while the densification rate is not 
so greatly affected by the gaseous phase at higher 
temperatures. 

This experiment, although significant, should not be 
taken as concluding proof for the theory because, as 
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Figure 8 Evolution of nitrogen-accessible surface area (left scale) 
and pore volume (right scale) with time for sintering of MgO 
nanometric particles at T= 823 K, (a) in the absence of water 
vapour, (b, c) in the presence of water vapour. 

the temperature becomes higher, the amount of dis- 
solved water decreases. Nevertheless, the theory cor- 
rectly predicts that the gaseous phase, to be a catalyst, 
must enter into the inner layers of the surface. In fact, 
if a gaseous phase is only adsorbed at the free surface, 
its effect would simply consist of reducing the surface 
tension, F~, so that, according to the expression of S~, 
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in Equation 40, the internal sintering stress would 
decrease. 
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CYoo = 1; such conditions determine cl 

cl ~ ae/4Gro (A10) 

Then, from Equation (A8), letting cotg (| ~ 2ro/a 
for small a/r| we obtain 

uo(Oo) = 

= a/2G (A11) 

from where the rigidity 

ki  -- ~ - i  

= 2G/a (A12) 

Appendix 1. Displacement at the 
boundary of a spherical open membrane 
subjected to a given surfacial straining 
With respect to a system of spherical coordinates, of 
which O represents the latitude, the surface strain in 
the case of meridian displacement, uo, is given by 

~(0) = (uo,o + u| cotgO)/ro (A1) 

In the present case, assuming ~(0) to be given by, say 

~(O) = ~o cosO (A2) 

Equation A1 is readily integrated to yield 

u| = ~oro/2 sin| + cl/sin| (A3) 

Letting c~ = 0 to avoid a singularity at | = n, the 
displacement at the boundary (/~ circumference of 
radius a) (sin| = a/ro, amounts to 

6 = aoa/2 (A4) 

Appendix 2. Elastic rigidity 
of a spherical open membrane 
loaded by unit meridian 
traction at a free boundary 
The meridian displacement, u| = dqb/d| must fulfil 
the differential equation [43] 

V4q~ = 0 (AS) 

where q5 is a membrane function and the Laplace 
operator in spherical coordinates reads, in the case of 
meridian symmetry 

V 2 = (ro 2/sin|174 (sin| d/dO) (A6) 

r| being the radius of the sphere. The meridian mem- 
brane stress component is 

cYoo = 2G/roUo,o + J/ro(Uo.o + u| cotg| (A7) 

G and J being the elasticities of the membrane, sup- 
posed to be elastically is| 

The solution of Equation A.5, after removal of sin- 
gularities at | = n, yields 

u| = cl cotg(| (A8) 

c~ being an integration constant. Substituting in 
Equation A7 yields 

cyoo = G/ro[Cl/sin2(| + j(cl/ro) (A9) 

At the free boundary, O = Oo, sin| --- a/r| 1, and 
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Appendix 3. Rigidity of a system 
of coupled membranes (refer to Figs 1 
and 2b) 
A radial unit traction at the neck cross-sectional ring 
produces a displacement which is a function of the 
rigidities of the two membranes and of the angles [31, 
13z. The unit traction has components in the two 
membranes, respectively 

~i = sin132/sin(131 + 132) (A13a) 

cy; = sin131/sin(131/132) (a13b) 

The radial displacement at the neck can be calculated 
via the theorem virtual work, as 

16 = cy'~Z/kl + cy'22/k2 (A14) 

If kl = k2 = 2Gs/a, Equation A14 yields the rigidity of 
the system 

k s = ~  1 

2Gs sinZ(131 + 132) 
= a sin2[31 + sin2132 (A15) 

Appendix 4. Rigidity of a circular 
plane membrane 
A circular plane membrane of radius a, subjected to 
a unitary peripheral traction, undergoes a state of 
uniform strain 

= Ur, r + ur /r  

1~Go (A16) 

where G b is the elasticity of the membrane and ur is the 
radial displacement. Integrating for the displacement 
and removing the singularity at r = 0, we obtain 

LI r = r/2Gb (A 17) 

from which the rigidity is 

kb = 2Gb/a (A18) 
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